Dual-orthogonal radial basis function networks for nonlinear time series prediction

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gradient Radial Basis Function Networks for Nonlinear and Non-stationary Time Series Prediction

We present a method of modifying the structure of radial basis function (RBF) network to work with non-stationary series that exhibit homogeneous non-stationary behaviour. In the original RBF network, the hidden node's function is to sense the trajectory of the time series and to respond when there is a strong correlation between the input pattern and the hidden node's center. This type of resp...

متن کامل

Gradient radial basis function networks for nonlinear and nonstationary time series prediction

We present a method of modifying the structure of radial basis function (RBF) network to work with nonstationary series that exhibit homogeneous nonstationary behavior. In the original RBF network, the hidden node's function is to sense the trajectory of the time series and to respond when there is a strong correlation between the input pattern and the hidden node's center. This type of respons...

متن کامل

Recurrent radial basis function network for time-series prediction

This paper proposes a Recurrent Radial Basis Function network (RRBFN) that can be applied to dynamic monitoring and prognosis. Based on the architecture of the conventional Radial Basis Function networks, the RRBFN have input looped neurons with sigmoid activation functions. These looped-neurons represent the dynamic memory of the RRBF, and the Gaussian neurons represent the static one. The dyn...

متن کامل

Recurrent Radial Basis Function Network for Failure Time Series Prediction

An adaptive software reliability prediction model using evolutionary connectionist approach based on Recurrent Radial Basis Function architecture is proposed. Based on the currently available software failure time data, Fuzzy Min-Max algorithm is used to globally optimize the number of the k Gaussian nodes. The corresponding optimized neural network architecture is iteratively and dynamically r...

متن کامل

Radial Basis Function Nets for Time Series Prediction

This paper introduces a novel ensemble learning approach based on recurrent radial basis function networks (RRBFN) for time series prediction with the aim of increasing the prediction accuracy. Standing for the base learner in this ensemble, the adaptive recurrent network proposed is based on the nonlinear autoregressive with exogenous input model (NARX) and works according to a multi-step (MS)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Neural Networks

سال: 1998

ISSN: 0893-6080

DOI: 10.1016/s0893-6080(97)00132-9